❌

Normal view

There are new articles available, click to refresh the page.
Yesterday β€” 11 March 2025Main stream

Achieving Better User Engaging via Realistic Load Testing in K6

1 March 2025 at 05:55

Introduction

Load testing is essential to evaluate how a system behaves under expected and peak loads. Traditionally, we rely on metrics like requests per second (RPS), response time, and error rates. However, an insightful approach called Average Load Testing has been discussed recently. This blog explores that concept in detail, providing practical examples to help you apply it effectively.

Understanding Average Load Testing

Average Load Testing focuses on simulating real-world load patterns rather than traditional peak load tests. Instead of sending a fixed number of requests per second, this approach

  • Generates requests based on the average concurrency over time.
  • More accurately reflects real-world traffic patterns.
  • Helps identify performance bottlenecks in a realistic manner.

Setting Up Load Testing with K6

K6 is an excellent tool for implementing Average Load Testing. Let’s go through practical examples of setting up such tests.

Install K6

brew install k6  # macOS
sudo apt install k6  # Ubuntu/Debian
docker pull grafana/k6  # Using Docker

Example 1: Basic K6 Script for Average Load Testing

import http from 'k6/http';
import { sleep } from 'k6';

export let options = {
  scenarios: {
    avg_load: {
      executor: 'constant-arrival-rate',
      rate: 10, // 10 requests per second
      timeUnit: '1s',
      duration: '2m',
      preAllocatedVUs: 20,
      maxVUs: 50,
    },
  },
};

export default function () {
  let res = http.get('https://test-api.example.com');
  console.log(`Response time: ${res.timings.duration}ms`);
  sleep(1);
}

Explanation

  • The constant-arrival-rate executor ensures a steady request rate.
  • rate: 10 sends 10 requests per second.
  • duration: '2m' runs the test for 2 minutes.
  • preAllocatedVUs: 20 and maxVUs: 50 define virtual users needed to sustain the load.
  • The script logs response times to the console.

Example 2: Testing with Varying Load

To better reflect real-world scenarios, we can use ramping arrival rate to simulate gradual increases in traffic

import http from 'k6/http';
import { sleep } from 'k6';

export let options = {
  scenarios: {
    ramping_load: {
      executor: 'ramping-arrival-rate',
      startRate: 5, // Start with 5 requests/sec
      timeUnit: '1s',
      preAllocatedVUs: 50,
      maxVUs: 100,
      stages: [
        { duration: '1m', target: 20 },
        { duration: '2m', target: 50 },
        { duration: '3m', target: 100 },
      ],
    },
  },
};

export default function () {
  let res = http.get('https://test-api.example.com');
  console.log(`Response time: ${res.timings.duration}ms`);
  sleep(1);
}

Explanation

  • The ramping-arrival-rate gradually increases requests per second over time.
  • The stages array defines a progression from 5 to 100 requests/sec over 6 minutes.
  • Logs response times to help analyze system performance.

Example 3: Load Testing with Multiple Endpoints

In real applications, multiple endpoints are often tested simultaneously. Here’s how to test different API routes

import http from 'k6/http';
import { check, sleep } from 'k6';

export let options = {
  scenarios: {
    multiple_endpoints: {
      executor: 'constant-arrival-rate',
      rate: 15, // 15 requests per second
      timeUnit: '1s',
      duration: '2m',
      preAllocatedVUs: 30,
      maxVUs: 60,
    },
  },
};

export default function () {
  let urls = [
    'https://test-api.example.com/users',
    'https://test-api.example.com/orders',
    'https://test-api.example.com/products'
  ];
  
  let res = http.get(urls[Math.floor(Math.random() * urls.length)]);
  check(res, {
    'is status 200': (r) => r.status === 200,
  });
  console.log(`Response time: ${res.timings.duration}ms`);
  sleep(1);
}

Explanation

  • The script randomly selects an API endpoint to test different routes.
  • Uses check to ensure status codes are 200.
  • Logs response times for deeper insights.

Analyzing Results

To analyze test results, you can store logs or metrics in a database or monitoring tool and visualize trends over time. Some popular options include

  • Prometheus for time-series data storage.
  • InfluxDB for handling large-scale performance metrics.
  • ELK Stack (Elasticsearch, Logstash, Kibana) for log-based analysis.

Average Load Testing provides a more realistic way to measure system performance. By leveraging K6, you can create flexible, real-world simulations to optimize your applications effectively.

Before yesterdayMain stream

Locust EP 1 : Load Testing: Ensuring Application Reliability with Real-Time Examples and Metrics

14 November 2024 at 15:48

In today’s fast-paced digital application, delivering a reliable and scalable application is key to providing a positive user experience.

One of the most effective ways to guarantee this is through load testing. This post will walk you through the fundamentals of load testing, real-time examples of its application, and crucial metrics to watch for.

What is Load Testing?

Load testing is a type of performance testing that simulates real-world usage of an application. By applying load to a system, testers observe how it behaves under peak and normal conditions. The primary goal is to identify any performance bottlenecks, ensure the system can handle expected user traffic, and maintain optimal performance.

Load testing answers these critical questions:

  • Can the application handle the expected user load?
  • How does performance degrade as the load increases?
  • What is the system’s breaking point?

Why is Load Testing Important?

Without load testing, applications are vulnerable to crashes, slow response times, and unavailability, all of which can lead to a poor user experience, lost revenue, and brand damage. Proactive load testing allows teams to address issues before they impact end-users.

Real-Time Load Testing Examples

Let’s explore some real-world examples that demonstrate the importance of load testing.

Example 1: E-commerce Website During a Sale Event

An online retailer preparing for a Black Friday sale knows that traffic will spike. They conduct load testing to simulate thousands of users browsing, adding items to their cart, and checking out simultaneously. By analyzing the system’s response under these conditions, the retailer can identify weak points in the checkout process or database and make necessary optimizations.

Example 2: Video Streaming Platform Launch

A new streaming platform is preparing for launch, expecting millions of users. Through load testing, the team simulates high traffic, testing how well video streaming performs under maximum user load. This testing also helps check if CDN (Content Delivery Network) configurations are optimized for global access, ensuring minimal buffering and downtime during peak hours.

Example 3: Financial Services Platform During Market Hours

A trading platform experiences intense usage during market open and close hours. Load testing helps simulate these peak times, ensuring that real-time data updates, transactions, and account management work flawlessly. Testing for these scenarios helps avoid issues like slow trade executions and platform unavailability during critical trading periods.

Key Metrics to Monitor in Load Testing

Understanding key metrics is essential for interpreting load test results. Here are some critical metrics to focus on:

1. Response Time

  • Definition: The time taken by the system to respond to a request.
  • Why It Matters: Slow response times can frustrate users and indicate bottlenecks.
  • Example Thresholds: For websites, a response time below 2 seconds is considered acceptable.

2. Throughput

  • Definition: The number of requests processed per second.
  • Why It Matters: Throughput indicates how many concurrent users your application can handle.
  • Real-Time Use Case: In our e-commerce example, the retailer would track throughput to ensure the checkout process doesn’t become a bottleneck.

3. Error Rate

  • Definition: The percentage of failed requests out of total requests.
  • Why It Matters: A high error rate could indicate application instability under load.
  • Real-Time Use Case: The trading platform monitors the error rate during market close, ensuring the system doesn’t throw errors under peak trading load.

4. CPU and Memory Utilization

  • Definition: The percentage of CPU and memory resources used during the load test.
  • Why It Matters: High CPU or memory utilization can signal that the server may not handle additional load.
  • Real-Time Use Case: The video streaming platform tracks memory usage to prevent lag or interruptions in streaming as users increase.

5. Concurrent Users

  • Definition: The number of users active on the application at the same time.
  • Why It Matters: Concurrent users help you understand how much load the system can handle before performance starts degrading.
  • Real-Time Use Case: The retailer tests how many concurrent users can shop simultaneously without crashing the website.

6. Latency

  • Definition: The time it takes for a request to travel from the client to the server and back.
  • Why It Matters: High latency indicates network or processing delays that can slow down the user experience.
  • Real-Time Use Case: For a financial app, reducing latency ensures trades execute in near real-time, which is crucial for users during volatile market conditions.

7. 95th and 99th Percentile Response Times

  • Definition: The time within which 95% or 99% of requests are completed.
  • Why It Matters: These percentiles help identify outliers that may impact user experience.
  • Real-Time Use Case: The streaming service may analyze these percentiles to ensure smooth playback for most users, even under peak loads.

Best Practices for Effective Load Testing

  1. Set Clear Objectives: Define specific goals, such as the expected number of concurrent users or acceptable response times, based on the nature of the application.
  2. Use Realistic Load Scenarios: Create scenarios that mimic actual user behavior, including peak times, user interactions, and geographical diversity.
  3. Analyze Bottlenecks and Optimize: Use test results to identify and address performance bottlenecks, whether in the application code, database queries, or server configurations.
  4. Monitor in Real-Time: Track metrics like response time, throughput, and error rates in real-time to identify issues as they arise during the test.
  5. Repeat and Compare: Conduct multiple load tests to ensure consistent performance over time, especially after any significant update or release.

Load testing is crucial for building a resilient and scalable application. By using real-world scenarios and keeping a close eye on metrics like response time, throughput, and error rates, you can ensure your system performs well under load. Proactive load testing helps to deliver a smooth, reliable experience for users, even during peak times.

❌
❌