❌

Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

Learning Notes #20 – Partitioning (data) With Postgres

31 December 2024 at 06:55

Early Morning today, i watched a video on partitioning and sharding. In that video, Arpit explained the limitation of Vertical Scaling and ways to infinite scale DB with Sharding and Partitioning. In this blog, i jot down notes on partioining with single node implementation with postgres for my future self.

As the volume of data grows, managing databases efficiently becomes critical and when we understood that vertical scaling has its limits, we have two common strategies to handle large datasets are partitioning and sharding. While they may sound similar, these techniques serve different purposes and are implemented differently. Let’s explore these concepts in detail.

What is Partitioning?

Partitioning involves dividing a large dataset into smaller, manageable segments, known as partitions. Each partition is stored separately but remains part of a single database instance. Partitioning is typically used to improve query performance and manageability.

Types of Partitioning

1. Range Partitioning

  • Data is divided based on ranges of a column’s values.
  • Example: A table storing customer orders might partition data by order date: January orders in one partition, February orders in another.

PostgreSQL Example

CREATE TABLE orders (
    id SERIAL,
    customer_id INT,
    order_date DATE NOT NULL,
    PRIMARY KEY (id, order_date) -- Include the partition key
) PARTITION BY RANGE (order_date);

CREATE TABLE orders_jan PARTITION OF orders
    FOR VALUES FROM ('2024-01-01') TO ('2024-02-01');

CREATE TABLE orders_feb PARTITION OF orders
    FOR VALUES FROM ('2024-02-01') TO ('2024-03-01');

2. Hash Partitioning

  • A hash function determines the partition where a record will be stored.
  • Example: Orders can be distributed across partitions based on the hash of the customer ID.

Postgres Example

CREATE TABLE orders (
    id SERIAL ,
    customer_id INT,
    order_date DATE NOT NULL,
    PRIMARY KEY (id, customer_id)
) PARTITION BY HASH (customer_id, id);

CREATE TABLE orders_part_1 PARTITION OF orders
    FOR VALUES WITH (MODULUS 2, REMAINDER 0);

CREATE TABLE orders_part_2 PARTITION OF orders
    FOR VALUES WITH (MODULUS 2, REMAINDER 1);

3. List Partitioning

  • Data is divided based on a predefined list of values.
  • Example: A table storing sales data could partition based on regions: North, South, East, and West

Postgres Example

CREATE TABLE sales (
    id SERIAL ,
    region TEXT NOT NULL,
    amount NUMERIC,
    PRIMARY KEY (id, region)
) PARTITION BY LIST (region);

CREATE TABLE sales_north PARTITION OF sales
    FOR VALUES IN ('North');

CREATE TABLE sales_south PARTITION OF sales
    FOR VALUES IN ('South');

4. Composite Partitioning

  • Combines two or more partitioning strategies, such as range and list partitioning.
  • Example: A table partitioned by range on order date and sub-partitioned by list on region.

Postgres Example

CREATE TABLE orders (
    id SERIAL,
    customer_id INT,
    order_date DATE NOT NULL,
    region TEXT NOT NULL,
    PRIMARY KEY (id, order_date, region)
) PARTITION BY RANGE (order_date);

CREATE TABLE orders_2024 PARTITION OF orders
    FOR VALUES FROM ('2024-01-01') TO ('2025-01-01')
    PARTITION BY LIST (region);

CREATE TABLE orders_2024_north PARTITION OF orders_2024
    FOR VALUES IN ('North');

CREATE TABLE orders_2024_south PARTITION OF orders_2024
    FOR VALUES IN ('South');

HAProxy EP 7: Load Balancing with Source IP Hash, URI – Consistent Hashing

11 September 2024 at 13:55

Load balancing helps distribute traffic across multiple servers, enhancing performance and reliability. One common strategy is Source IP Hash load balancing, which ensures that requests from the same client IP are consistently directed to the same server.

This method is particularly useful for applications requiring session persistence, such as shopping carts or user sessions. In this blog, we’ll implement Source IP Hash load balancing using Flask and HAProxy, all within Docker containers.

What is Source IP Hash Load Balancing?

Source IP Hash Load Balancing is a technique that uses a hash function on the client’s IP address to determine which server should handle the request. This guarantees that a particular client will always be directed to the same backend server, ensuring session persistence and stateful behavior.

Consistent Hashing: https://parottasalna.com/2024/06/17/why-do-we-need-to-maintain-same-hash-in-load-balancer/

Step-by-Step Implementation with Docker

Step 1: Create Flask Application

We’ll create three separate Dockerfiles, one for each Flask app.

Flask App 1 (app1.py)

from flask import Flask

app = Flask(__name__)

@app.route("/")
def hello():
    return "Hello from Flask App 1!"

if __name__ == "__main__":
    app.run(host="0.0.0.0", port=5001)


Flask App 2 (app2.py)

from flask import Flask

app = Flask(__name__)

@app.route("/")
def hello():
    return "Hello from Flask App 2!"

if __name__ == "__main__":
    app.run(host="0.0.0.0", port=5002)


Flask App 3 (app3.py)

from flask import Flask

app = Flask(__name__)

@app.route("/")
def hello():
    return "Hello from Flask App 3!"

if __name__ == "__main__":
    app.run(host="0.0.0.0", port=5003)

Each Flask app listens on a different port (5001, 5002, 5003).

Step 2: Dockerfiles for each flask application

Dockerfile for Flask App 1 (Dockerfile.app1)

# Use the official Python image from the Docker Hub
FROM python:3.9-slim

# Set the working directory inside the container
WORKDIR /app

# Copy the current directory contents into the container at /app
COPY app1.py .

# Install Flask inside the container
RUN pip install Flask

# Expose the port the app runs on
EXPOSE 5001

# Run the application
CMD ["python", "app1.py"]

Dockerfile for Flask App 2 (Dockerfile.app2)

FROM python:3.9-slim
WORKDIR /app
COPY app2.py .
RUN pip install Flask
EXPOSE 5002
CMD ["python", "app2.py"]

Dockerfile for Flask App 3 (Dockerfile.app3)

FROM python:3.9-slim
WORKDIR /app
COPY app3.py .
RUN pip install Flask
EXPOSE 5003
CMD ["python", "app3.py"]

Step 3: Create a configuration for HAProxy

global
    log stdout format raw local0
    daemon

defaults
    log     global
    mode    http
    option  httplog
    option  dontlognull
    timeout connect 5000ms
    timeout client  50000ms
    timeout server  50000ms

frontend http_front
    bind *:80
    default_backend servers

backend servers
    balance source
    hash-type consistent
    server server1 app1:5001 check
    server server2 app2:5002 check
    server server3 app3:5003 check

Explanation:

  • The balance source directive tells HAProxy to use Source IP Hashing as the load balancing algorithm.
  • The hash-type consistent directive ensures consistent hashing, which is essential for minimizing disruption when backend servers are added or removed.
  • The server directives define the backend servers and their ports.

Step 4: Create a Dockerfile for HAProxy

Create a Dockerfile for HAProxy (Dockerfile.haproxy)

# Use the official HAProxy image from Docker Hub
FROM haproxy:latest

# Copy the custom HAProxy configuration file into the container
COPY haproxy.cfg /usr/local/etc/haproxy/haproxy.cfg

# Expose the port for HAProxy
EXPOSE 80

Step 5: Create a Dockercompose file

To manage all the containers together, create a docker-compose.yml file

version: '3'

services:
  app1:
    build:
      context: .
      dockerfile: Dockerfile.app1
    container_name: flask_app1
    ports:
      - "5001:5001"

  app2:
    build:
      context: .
      dockerfile: Dockerfile.app2
    container_name: flask_app2
    ports:
      - "5002:5002"

  app3:
    build:
      context: .
      dockerfile: Dockerfile.app3
    container_name: flask_app3
    ports:
      - "5003:5003"

  haproxy:
    build:
      context: .
      dockerfile: Dockerfile.haproxy
    container_name: haproxy
    ports:
      - "80:80"
    depends_on:
      - app1
      - app2
      - app3

Explanation:

  • The docker-compose.yml file defines four services: app1, app2, app3, and haproxy.
  • Each Flask app is built from its respective Dockerfile and runs on its port.
  • HAProxy is configured to wait (depends_on) for all three Flask apps to be up and running.

Step 6: Build and Run the Docker Containers

Run the following commands to build and start all the containers:

# Build and run the containers
docker-compose up --build

This command will build Docker images for all three Flask apps and HAProxy and start them up in the background.

Step 7: Test the Load Balancer

Open your browser or use a tool like curl to make requests to the HAProxy server:

curl http://localhost

Observation:

  • With Source IP Hash load balancing, each unique IP address (e.g., your local IP) should always be directed to the same backend server.
  • If you access the HAProxy from different IPs (e.g., using different devices or by simulating different client IPs), you will see that requests are consistently sent to the same server for each IP.

For the URI based hashing we just need to add,

global
    log stdout format raw local0
    daemon

defaults
    log     global
    mode    http
    option  httplog
    option  dontlognull
    timeout connect 5000ms
    timeout client  50000ms
    timeout server  50000ms

frontend http_front
    bind *:80
    default_backend servers

backend servers
    balance uri
    hash-type consistent
    server server1 app1:5001 check
    server server2 app2:5002 check
    server server3 app3:5003 check


Explanation:

  • The balance uri directive tells HAProxy to use URI Hashing as the load balancing algorithm.
  • The hash-type consistent directive ensures consistent hashing to minimize disruption when backend servers are added or removed.
  • The server directives define the backend servers and their ports.

❌
❌