Task β For Loop β Playing with Numbers
17 October 2024 at 14:46
Armstrong, Neon, Perfect, Prime, emirP, Strong, Triangle Series
import java.util.Scanner; public class forLoopPlayWithNos { // USING FOR LOOP //Code for Armstrong, Neon, Perfect, Prime, emirP, Strong Numbers // Factorial, SumOfDigits, ReverseDigits, CountOfDigits, Power also used. //Triangular Series : 1,3,6,10,15,21,28,.... // FOR PRINTING private static void print(int n, String numType, boolean matched) { if (matched) System.out.println(n+" is a " + numType +" Number."); else System.out.println(n+" is not a " + numType +" Number."); } public static void main(String[] args) { // TODO Auto-generated method stub forLoopPlayWithNos loop = new forLoopPlayWithNos(); System.out.print("Enter a Number to Play = "); Scanner scn = new Scanner(System.in); int num = scn.nextInt(); scn.close(); forLoopPlayWithNos.print(num, "ArmStrong",loop.isArmstrongNo(num)); forLoopPlayWithNos.print(num, "Neon", loop.isNeonNo(num)); forLoopPlayWithNos.print(num, "Perfect",loop.isPerfectNo(num)); forLoopPlayWithNos.print(num, "Prime",loop.isPrimeNo(num)); forLoopPlayWithNos.print(num, "emirP",loop.isemirPNo(num)); forLoopPlayWithNos.print(num, "Strong",loop.isStrong(num)); loop.tringangularSeries(num); } private boolean isArmstrongNo(int n) { //Sum of (each digit to the power of (No of digits)) == n // Ex. 371, 153 == 1^3 + 5^3 + 3^3 = 1+125+27 int powSum=0, nod = countDigits(n); for (int num=n; num>0; num/=10) { powSum += findPower((num%10),nod); } if (n == powSum) return true; return false; } private boolean isNeonNo(int n) { //Neon = (Sum of digits of a squared number == number) // Ex 1,9,45,55 int sqNum = n*n; if (n == sumOfDigits(sqNum)) return true; return false; } private boolean isPerfectNo(int n) { //Sum of its divisors (excluding n) == n //Ex. 6,28,496 int sum=1; for(int i=2; i<n; i++) { if (n%i == 0) sum+=i; // Adding Divisors } if (sum==n) return true; return false; } private boolean isPrimeNo(int n) { // N number that can be divided exactly only by itself, ie n's divisors are 1 and n // Ex 2,3,5,7,11,13 switch(n) { case 0,1: return false; case 2,3: return true; default: if (n%2 == 0) return false; else { for (int i=3; i*i<n; i+=2) { if (n%i == 0) { return false; } } } } return true; } private boolean isemirPNo(int n) { // A number and revereDigits of that number are prime int rev = reverseDigits(n); return (isPrimeNo(n) && isPrimeNo(rev))? true:false; } private boolean isStrong(int n) { //sum of the factorial of its digit is equal to number itself // Ex. 145 = 1!+4!+5! int sum = 0, num=n; for (num=n; num>0; num/=10) { sum += factorial(num%10); } return (n == sum)? true:false; } private int findPower(int base, int pr) { // finding base to the power pr int res=1; for (; pr>=1; pr--) { res *= base; } return res; } private int reverseDigits(int num) { int rev = 0; for (; num>0; num/=10) { rev = rev*10 + num%10; } return rev; } private int countDigits(int num) { //Counting No. of Digits int cnt=0; for (; num>0; num/=10,cnt++); return cnt; } private int sumOfDigits(int n) { int sum=0; for (; n>0; n/=10) { sum += n%10; } return sum; } private int factorial(int n) { int fact=1; for (int i=1; i<=n; i++) { fact *= i; } return fact; } private void tringangularSeries(int n) { System.out.print("Tringangular Series : "); for (int tri=1, i=2; tri<=n; i++) { System.out.print(tri+" "); tri+=i; } } }
OUTPUT: